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HYPERSONIC PROFILE OF MINIMUM DRAG, HAVING AN ASSIGNED
BENDING STRENGTH

Ye. V. Bulygina, Yu. N. Yudintsev

The authors try to find the most advantageous form
of a hypersonic profile which, for a given drag torque,
has minimum drag. The problem is solved by a variational
method.

In order to enhance the aerodynamic quality of the supporting surfaces /119%
of hypersonic aircrafts, it is necessary to diminish the thickness of the pro-
file, which in turn leads to a decrease in the strength of the airfoil. By a
favorable distribution of masses, one can increase the drag torque, and there-
by raise the bending strength.

In the present work, we have tried to find the most advantageous form of
a hypersonic profile which, for a given drag torque, has minimum drag. The
problem is solved by a variational method. The pressure coefficient is deter-
mined from Newton's formula (Ref. 1)

p=2slin%y, (1)

where v is the angle between the direction of the flow and the tangent to the
surface of the aircraft.

Let y = y(x) be the equation of
the hypersonic profile. Then v = a +
8, where tan 6 = y' (Figure 1).

For thin profiles, operating at a
small angle of attack, we may assume:

.

sinv=a + 6, tg9’=0=_c-,

SIS

Here X = %3 is the relative thickness of the profile, b is the

chord.
The pressure coefficient in this case has the form:

p=2@a+cy). (1)*

If a > 6, then the upper surface will lie in the aerodynamic shadow, and the
pressure coefficient at it will equal zero (ﬁﬁ = 0).

* Numbers in the margin indicate pagination in the original foreign text.
** Translator's note: The original Russian gives Vv, but it should clearly be

y.




The lift and drag coefficients are determined by the form of the lower /120
surface:

Cy=2{@+cyYds,. |
b : ‘ (2)
cx=25(a+25')3d}.
o) (3)
Bending strength torque will be written as
w=L
r 1

where I is the moment of inertia referred to the neutral axis,
r is the distance between the neutral axis and the most remote point of
the surface of the profile.

The location of the neutral axis depends, in general, on the form of the
profile. 1If the profile is symmetrical, then the neutral axis coincides with
the axis of symmetry x. In this case, for a solid profile the moment of in-

ertia will be ‘
I, =0y
s =5 | V'ax, (4)
0.
for a non-solid profile with a small wall thickness § it will be
I = %52°° { ydx. ’ (4a)
[i]
Correspondingly, the bending strength torque is:

W, = ﬁz’ij}ad}= A jjw} —for the solid profile, (5)
0 0 i

W, = 48¢h? j‘?dz = Arz‘f?d} — »the hollow profile. (5a)
0 ‘ 0 ‘

The determination of a profile of minimum drag for a given lifting power and
bending strength torque amounts to finding an extremum at which the functional
(3) attains its minimum for pre-assigned values of the functionals (2), (5a) or
(5). To solve this problem by Lagrange's method, we shall construct a func-
tional having F as the integrand:

F=(@+cy)P+h+cy)y+hy" (6)
Here n = 3 for the solid profile, and n = 2 for the thin-walled profile.
Euler's equation will have the form:
Any ! — E-f;—{ 3(a+ Y+ 2@+ cy)=0. (7
Since it does not contain an explicitly independent variable, then -- intro-
ducing the new function
=Y, (8)

A}

we obtain a first-order equation:



M G {30 + o) + 2o (a+ Go)f = 0. )
If A, = 0, then (7) has the solution V' = const. For Al + 0, the variables

1
in (9) are separated:

B |
7=%V ¢+ 5¢ +C, (10)

Here Xl XO are new arbitrary coefficients. If one considers ¢ as a parameter,
b

then we shall obtain the independence of ¥ on the parameter by making use of
the relations:

= __dy
dx = —'?— y ‘ : (11)
- ) 1—n
- 1 > RSy
= —n-‘- X (Cy+ Ao+ 9% " (24 + 39) do + C,. (12)

We substitute (12) in the expressions (2), (3), (5) or (5a). Taking ¢ as an

independent variable we find:
P2

, ~ 2 1—n
C,=2c" %S (;% + ?) (C, + ho®? + @) " (2% + 39) do, i (13)
e SO in - i
- C,=2¢° —H.(T + 9) (Cy + %9® + 9%) " (2K; + 39) do, (14)
fo ‘ ’
) _ FJa+i 3 -~ £ | !
W — Ao ln j‘(cl + 292+ 0%) (I, + 3¢)dg. (15)

o
The limits of integration ¢0 and ¢2 are calculated using the initial conditions

since ¢0 and ¢2 replace ¢y and Cyt

(1) ¢ = ¢, forx=0,7 =0,

(2) ¢

¢y forx=1,v=1.

From the first condition we have:
Cp=— 9, — koo;.

The parametric equation of the profile will be:
~ £ 1—n
— X Y — .
: x=7‘jl?a—?f}Ho((ff"—cp[‘:)]"(27k(,+3q>)a{<p,J
! Po . '
- B ‘ = !
T=%V (6" =99 +7, (¢ — @2 |
The integrals (13)-(16) can be evaluated in terms of elementary functions for

n=3and a = AO’ i.e., if we set ourselves a problem of a profile of minimum

drag having a solid cross-section for a given drag torque, lifting power being

(16)

3



not pre-assigned.

In this case:

_ .8 |

j=ive—e, | (17)
}—'Xfﬂ-—_w? . (18)

Y@ -

The integral (18), defining X, is a binomial differential. Performing calcula-
tions with the aid of the substitution

V=G

we shall obtain the dependence of X on the parameter u, expressed in terms of
elementary functions

3 ,
§=;[ 1 oVw—1%p  m
- LV3 Vip 6V3
3 p—— ,
R (b —V p2— 1) } |
o, 3 3 !
23 ek aV 1V (e —1p

arc f{g

(19)

From (2) with the aid of (19) we find X (setting u = ) for X = 1), Then from
(17), making use of the condition ¥ = 1 for u = By, we find ¢0. For example,

2T

= 1.212, and
373 o
consequently, A= -0.825 and ¢0 = 1.212. Assigning other values to Hys We de-

for My = 0 we find that the integral in (18) is equal to

termine the corresponding A and ¢0.

With the help of the same substitution as in (18), the integral determining
Cxis calculated for a solid profile:

-~

]
C, = z‘éai?gj—l‘-‘-—-dp —
= )V =T

r 3 —
~3% 31 3 2 2V 3~ 14 py
= 93 @3~ 2 3 __ = —
/ . .3 - ‘ ‘ : ‘
. 1 (wa—V 3 — 1) on

—1

-

3 3
Bt mV =1+ V(- 1p

If My = 0, then Cx = 1.19'233, i.e., the drag of the profile obtained is 19%

higher than the drag of a wedge with the same relative thickness T.

Let us find the bending strength torque of the optimum profile substituting



¥ and X expressed in terms of ¢ in formula (5):

e~ ‘?:3 e
W.-:Asc2x4j}/¢3_¢g.d<p,

Fo )
: 3 :
 AT2%4 ] 3 1 (s —V 3 —1p :
W=Ac Voo 1y si~1+5in 3 — =l (21)
: B mV B —1+V 1y
\ t 2V 31 +
_arc g — -+
L V3 Vips 6V3
2.1 ’ s .
For My = 0 we obtain W = ASc 3 For a wedge-shaped solid profile of the /123

same thickness, the bending strength torque will be 257% lower:
WW = Atz2 . '1_ .
) 4
To increase the strength, the thickness of the wedge-shaped profile should
be larger: _
— 4 p—
C:W = ?coptf (22)
The drag of a wedge with the same strength is

98 __ 3
Cxw —203W— 1,15%.9¢3

opt

Cuw _ _ 1.15° -

Cy opt 1.19

, we obtain the conditions

and is 29% higher than that for the optimum profile, since

1.29. From (15) and (16), setting ¢ = ¢2 or u =

u
2
for the determination of XA, and ¢>O:

1 3
X, (P(‘)n Ry____. , | (23)
Y, "
SL.o" R.=1 (24)
Here
Ry':l/l — u3, i (25)
Ay l_ 7/
Ri=13(1—¢)" .ap (26)
1
Hence
_ R
Po = nR,,
and
Ryit
y ) R,

The drag and the bending strength torque can be similarly represented



.\N 3 . 2
Y,y BN __oal R
Wty =200 (27)
W/—- ~ 1 ';M-l _n_+2 —y Iy |
= Ac —— 9, M= A" e (28)
R.R:
where
‘ L) ’ -l-—l
L={3t =" dp, | (29)
{ |
B ‘ L
w= | Ba(1—p9)" dy. ‘ (30)

Substituting these expressions in the conditions of equality of bending /124
strength torques, we obtain the relations between the thicknesses of the opti-
mum profiles and the wedge-shaped profiles:

-l ST
—_ — : Iy (n41) .
Ge =Cp °ﬁl/_—_RxR§', .{ (31)
The ratio of drags for these profiles is proportional to the cube of the
ratio of thicknesses:

— s 3
Cxw _<CW )a&_l_=[(n+1)’w]':l n3 .

cprof Ix ?g Ry ; Ri"_‘*;‘ (32)
xfx

% prof.

The dependence of Rx’ Iw’ Ix’ and ¢0 for various values of By for a solid

profile (n = 3) is given in the table. As may be seen, all the quantities
depend only slightly on ¢,. For a thin-walled profile (n = 2), these integrals

can be calculated only approximately.

The integrals which determine ¥ and Cx are improper integrals, and for
¢ = ¢O (or y = 1) the integrand has a discontinuity. This singularity pre-

vents us from calculating the integrals by the usual methods of numerical in-
tegration for the entire interval at once. We shall divide the interval of
integration and the corresponding integral into two parts. The first part --
with a discontinuity, the second -~ with a continouous integrand:

1= wemar+ [ Fi e an

1—¢

The second term is calculated by the usual methods of numerical integration.

In the neighborhood of the point of singularity, we can apply the mean-
value theorem

1—e 1—s

[ f@e@dr=9@ [ f(0ax,
1 1

where £ denotes some intermediate point in the interval [1, 1 - €].



If we take € = 0.1 and £ = 0.95 as the inner point of the interval, we then
have

0,9
wdp ( a ) VT | = 03418
5 V1i—p Vet o+ 1/p=095 Pl o ’

The same integral for Cx will be
0,9

f e 953,
V1i—w

For the case of a thin-walled profile (n = 2), the ratio of the drags for
the wedge-shaped profile and the optimum profile with the same bending strength
can be written as:

Cxw 21[‘340 }3 1
= —— ——2' . '
% vprof. T LRRy | R:™ | (33)
Considering that for By = 0, R =1, R =0.838, I = 3+0.365 and I_ =
Cx y P W X
3°0.408, we obtain =¥ __ = 2,27 -- i.e., the gain in the drag for the wedge

with equal bending sirZE;th over that for the optimum profile is larger than 2.
A change in the drag for other Moy is small, and can be estimated on the /125
basis of formula (33) by changing all the integrals:
(GG (gt gt i)
Cy opt Cy opi I, Iy | Ry Ry |
Since, by virtue of (25), (26), (29) and (30), all the derivatives are
dly| | dh dRy

dp lp=0 |dp dp

=0

k]

=0

then AI and AR, the increments of all the integrals, will be variables of sec-
ond order with respect to Au

.
TABLE

n=3 ‘
e o | 005" 0,10 [~ 0,20 0,30 |
R, 1,212 1,180 1,176 1,122- 1,074
Ry 1 1,000 1,000 - 0,997 0,991
I 1,212 1,181 1,177 1,124 1,078
I 2,42 2,494 | 2,423 9,422 2,420
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